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INTRODUCTION
The lipid bilayer moiety of biological membranes represents a barrier to ion

flux which permits most membranes to maintain ion concentration gradients
essential for function, such as the electrochemical proton gradients of coupling
membranes and the sodium-potassium Ion gradients of axons. However, the bilayer
is not a perfect barrier, and there are measureable fluxes of protons and metal
Ions like sodium and potassium. The nature of the barrier and the mechanism of
conductance have Intrinsic interest. Both involve physical properties of the
bilayer, particularly in regard to transient defects that permit Ionic flux to
occur. In past work, we have reported that protons have intrinsic permeabilitles
five to six orders of magnitude greater than that of other cations. Protons
appear to have a unique pathway for flux across the bilayer, and we suggested
that the conductance mechanism may Involve Grotthus conductance along hydrogen
bonded water associated with the membrane. In the progress to be reported here,
we extended this work to gramicidin A, which forms ion conducting channels
containing single strands of hydrogen bonded water molecules. We found that
these channels had very high proton permeabilitles relative to other Ions. This
leads to the intriguing possibility that biological membranes may have similar
proton flux mechanisms related to their function, an example being the Fo subunit
of coupling membranes. The primary goal of our research is to expand our
knowledge of Ionic flux mechanisms, with emphasis on proton flux, and to link
such conductance pathways to membrane function.

PROGRESS REPORT

* About half of the reporting period (August 1, 1986 - March 1, 1987) was
spent at the Australian National University, Canberra, while on sabbatical leave
at the Department of Applied Mathematics. Research supported by the Office of
Naval Research was continued at UC Davis by Mr. John Mais, our Staff Research
Associate, and 2 months of work was carried out at ANU on ion conductance
measurements made in media with different dielectric constants. Progress was
made in the following areas: 1. Gramicidin as a model "proton wire." 2.
Effects of homologous series of alcohols on proton flux in liposomes, and the
relationship to their anesthetic properties. 3. Application of the above findings
to proton permeability and proton pumping in synaptic vesicles.

* 1. Gramicidin as a model proton wire.
Gramicidin A is a pentadecapeptide which forms channels consisting of two

pl-hellces In head-to-head contact (1,2). The helices have a 0.2 nm channel
along their long axes, sufficient to contain a single strand of hydrogen bonded
water molecules (3 ). It has long been suspected that this channel would permit
proton flux through a hydrogen bond exchange mechanism (4 ) but very little work
has been carried out. Our approach was to test this hypothesis by direct
comparison of proton and potassium flux through the channel, using the results to
determine relative permeabilities at physiological pH ranges. We could then
compare the properties of the channel to proton/potassium flux in lipid bilayers,
which we have postulated also occurs through a wire-like conductance.

To summarize our results, we found that the intrinsic proton/potassium
permeability ratio was In the range of 10 E4. This was less than the six orders
of magnitude difference we see in lipid bilayers, but impressive nonetheless. If
the channel does contain hydrogen bonded water strands, It would be expected that
channel conductance to protons would be reduced by exchanging water for deuterium
oxide, since It Is known that deuterium oxide ice Is significantly less
conductive than water Ice. When this measurement was made, we found that proton
flux In deuterium oxide was reduced by a factor of two, while potassium flux was
unaffected. If we are able to show that such an isotope effect is a general
property of proton wires, It will be a useful tool to explore the possible
existence of wire-like conductance In biological membranes.L 1
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2. Effects of homologous alcohols on proton/potassium permeabilitles of lipid
bilayers.

If the Intrinsic permeability of a lipid bilayer depends on transient
defects occurring in the hydrocarbon chains through thermal motions, It would be
expected that the number of such defects would be Increased by certain perturbant
molecules. In past work supported by ONR (5 ) we showed that this is indeed the
case: molecules such as chloroform, halothane, diethyl ether and n-butanol all
Increased the relative permeability of lipid bilayers to protons and potassium.
Furthermore, we could relate this observation to a theory of general andsthesla
proposed in 1980 by Bangham and Mason (6 ) which suggests that the primary
anesthetic effect is on proton permeability of synaptic vesicles, thereby
reducing their ability to maintain gradients of catecholamine neurotransmitters.

In order to better understand the effects of such perturbants, we have
Investigated a series of alcohols up to four carbons, Including diols and triols.
There were several surprises. First, we found that glycerol had essentially no
effect on permeability, despite earlier reports to the contrary. This could be
explained by the partition coefficient of glycerol - even at 7 M concentrations
in the aqueous phase, insufficient amounts get into the bilayer phase to produce
significant perturbations of the low dielectric barrier. We also found that 1,2
butanediol and 1,4 butanediol had somewaht different effects on permeability.
That is, the 1,2 diol approximately doubled permeability at 0.5 M, while the 1,4
diol required nearly 2 M concentrations to produce the same effect. This result
was unexpected, since the 1,4 diol has a higher partition coefficient and would
be expected to reach 4-fold greater membrane concentration. This observation
led to a prediction that Ihe 1,2 diol would have anesthetic activity, but not the
1,4 diol. We tested this in Medaka fish, with a positive result. This is the
first time an anesthetic effect has been predicted from proton permeation rates,
and represents evidence favoring the Bangham pump-leak hypothesis.

3. Effects of general anesthetics on synaptic vesicles
The results summarized above were sufficiently exciting that we decided

to extend the effort to a more biological system. Synaptic vesicles are an
obvious choice, and we have established methods for preparing synaptic vesicles
from the bovine caudate nucleus. With this system, we will be able to critically
test the pump leak hypothesis by monitoring the effects of anesthetics on ATPase
activity, pH gradients, proton permeability, and catecholamine uptake associated
with synaptic vesicle membranes.
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' " Relative permeability of gramicidin channels to protons and potassium ions. Proton
flux (moIcm-"S X 106)was measured as described in the text and Fig. 1. and potassium flux
(molem --s - 1 x 10") was measured by a potassium-sensitive glass electrode. with cholint
replacing potassium in the external medium. Valinomycin (0.Sugimg lipid) was present during
proton flux measurements to prevent proton diffusion potentials from interfering. Gramicidin
concentration was 1O0 ng'mg phospholipid (1.05 x 10 - 4 molts channel cm - bilayer) for proton
flux measurements (egg PC: POPA liposomes. 9:1. 1 mg toial lipid). Gramicidin was varied
from 0 to 100 ng in potassium flux measurements (5 mg total lipid), and its concentration in the
figures is given as molts channel cm - x 10". To measure proton flux. gramicidin concentration
was kept constant and pH gradients were varied from 0.3 to l.3pH units across liposome
membranes (A). The open circles show control values, and open squares show proton flux with
Sramicidin present. The closed circles and line give the difference, which was taken to represent
proton flux through gramicidin channels. Potassium flux wasmeasured with a gradient or 0.4 M
potassium ion, and gramicidin was varied as shown in (C). From the flux increments caused by
gramicidin additions, unit flux could be calculated as ions per channel per second. This ranged
from I to 10 protons per second as the pH gradient increased from 0.3 to 1.3 pH units (B) and
was approximately 230 potassium ions per channel per second (C) The unit permeability
coefficients were then calculated as unit flux'concentration, giving values of 3 x 10' for protons
and 585 for potassium ions, with a If 'K permeability ratio of 5 x 10'.
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